Ngành học
  • Giới thiệu chung
  • Chuẩn đầu ra
  • Khung chương trình đào tạo
  • Triển vọng nghề nghiệp
  • Học phí, học bổng và môi trường học
  • Nghiên cứu ứng dụng
  • Hoạt động sinh viên
  • Sinh viên và cựu sinh viên tiêu biểu
  • Đánh giá của nhà tuyển dụng

NGÀNH KHOA HỌC DỮ LIỆU

MÃ XÉT TUYỂN: QHT93

KHOA TOÁN – CƠ – TIN HỌC

Mỗi ngày, các cá nhân và tổ chức tạo ra khoảng 2,5 tỷ gigabyte dữ liệu. Đơn cử, một ngày có trung bình có 5 tỷ video được đăng tải lên Youtube, mỗi giây có khoảng 40.000 lượt tìm kiếm google .... nhưng chỉ hơn 1% trong số dữ liệu khổng lồ đó được phân tích. Ai khai thác và tận dụng được kho thông tin quý giá này người đó sẽ thành công. Tuy nhiên, để phát huy tối đa sức mạnh của nguồn dữ liệu này cần sự góp sức lớn của các nhà khoa học dữ liệu, những người sẽ chuyển nguồn dữ liệu thô thành thông tin có giá trị.

Khoa học dữ liệu sẽ giúp doanh nghiệp giải quyết các vấn đề đang tồn đọng và phức tạp, giảm thiểu việc không hiệu quả, nâng cao dịch vụ khách hàng và tạo ra cơ hội mới. Khoa học dữ liệu là một lĩnh vực liên ngành liên quan đến việc nghiên cứu, tìm hiểu và trích rút thông tin/tri thức từ các tập (rất lớn) dữ liệu tồn tại dưới nhiều các định dạng khác nhau. Khoa học dữ liệu có ảnh hưởng rộng lớn và trực tiếp đến nhiều lĩnh vực nghiên cứu ứng dụng khác nhau: từ dịch máy, nhận dạng tiếng nói, robot, công cụ tìm kiếm, cho đến các ngành khoa học sinh học, y sinh, chăm sóc sức khỏe, khoa học xã hội và nhân văn.

Khoa học dữ liệu dựa trên nền tảng kiến thức của 3 lĩnh vực chính gồm Khoa học máy tính, thống kê và toán ứng dụng. Đây đều là các thế mạnh của Khoa Toán – Cơ – Tin học.

1. Về kiến thức

1.1. Khối kiến thức chung

  • Vận dụng được các kiến thức cơ bản về khoa học chính trị, pháp luật và về tư tưởng, đạo đức cách mạng trong việc tuân thủ chính sách, pháp luật và có trách nhiệm xã hội.  
  • Vận dụng được kiến thức về ngoại ngữ trong giao tiếp và công việc chuyên môn. Đạt yêu cầu về trình độ ngoại ngữ bậc 3 theo Khung năng lực ngoại ngữ 6 bậc dùng cho Việt Nam.
  • Vận dụng kiến thức an ninh, quốc phòng trong bảo đảm an ninh xã hội và bảo vệ tổ quốc.
  • Vận dụng được các kiến thức cơ bản về rèn luyện thể chất trong rèn luyện và bảo vệ sức khoẻ cá nhân.

1.2. Kiến thức chung theo lĩnh vực                                  

  • Khái quát hóa các kiến thức cơ bản về khoa học tự nhiên và xã hội, khoa học sự sống làm nền tảng lí luận và thực tiễn cho Khoa học dữ liệu.
  • Vận dụng kiến thức về công nghệ thông tin và hiểu biết về cách mạng công nghiệp 4.0 đáp ứng yêu cầu công việc.

1.3. Kiến thức chung của khối ngành

  • Vận dụng được các kiến thức về cơ sở vật lí trong thực tiễn cuộc sống và công việc chuyên môn.

1.4. Kiến thức chung của nhóm ngành

  • Vận dụng được kiến thức về toán cao cấp, thống kê và lập trình cơ bản trong việc mô hình hoá và giải quyết các vấn đề tính toán.
  • Vận dụng được kiến thức về quy tắc giao tiếp trong môi trường doanh nghiệp và làm việc nhóm, quản lí thời gian.

1.5. Kiến thức ngành

  • Phân tích, thiết kế, cài đặt và đánh giá một hệ thống hoặc một thành phần của hệ thống quản trị dữ liệu dựa trên các kiến thức cơ bản về khoa học máy tính và các công nghệ hiện đại;
  • Đề xuất giải pháp, lập kế hoạch và tổ chức thực hiện, giám sát việc vận dụng các phương pháp và quy trình thu thập, làm sạch, phân loại, tổ chức lưu trữ và xử lí các nguồn dữ liệu, đáp ứng các ràng buộc chặt chẽ về tài nguyên tính toán cũng như các ràng buộc của các vấn đề thực tiễn, dựa trên các kiến thức và công cụ về cơ sở dữ liệu, dữ liệu lớn và thống kê;
  • Thiết kế, lập kế hoạch và tổ chức tiến hành các thực nghiệm phân tích dữ liệu, trực quan hoá, xây dựng mô hình thống kê, đánh giá mô hình và diễn giải cho các bộ dữ liệu đa dạng, phức tạp thuộc một lĩnh vực đặc thù nào đó, sử dụng các kĩ thuật và công cụ hiện đại trong thống kê và học máy;
  • Phát hiện, trích rút thông tin, tri thức ẩn trong dữ liệu và sử dụng sáng tạo, hiệu quả các thông tin, tri thức đã được trích rút;
  • Xây dựng được một mô hình hỗ trợ quyết định hoặc một mô hình mô phỏng dựa vào các phương pháp phân tích dự báo và kiểm định.
  • Xác định được vấn đề, hướng nghiên cứu, đề xuất giải pháp và đánh giá kết quả một đề tài nghiên cứu.

2. Về kĩ năng

2.1. Kĩ năng chuyên môn

  • Phát hiện vấn đề và đánh giá, phân tích vấn đề.
  • Sử dụng thành tạo các công cụ, có kĩ năng tiếp thu nhanh công nghệ mới trong lĩnh vực phân tích dữ liệu.
    • Vận dụng được các phương pháp tổ chức, lưu trữ dữ liệu;
    • Sử dụng thành thạo các công cụ trực quan hoá dữ liệu;
    • Vận dụng được các phương pháp xử lí thông tin, khai phá dữ liệu, phát hiện tri thức từ các kho dữ liệu.
  • Đưa ra giải pháp, tối ưu hoá giải pháp để giải quyết các vấn đề cụ thể.
    • Đề xuất, triển khai mô hình lưu trữ, phân tích dữ liệu, biểu diễn dữ liệu và đánh giá được hiệu quả mô hình.
    • Có tư duy logic về toán học, thống kê, thành thạo việc đánh giá, tổng hợp các hệ thống dữ liệu.
  • Thực hiện, phát triển các đề tài nghiên cứu dưới sự hướng dẫn của các chuyên gia. Áp dụng được các quy trình, phương pháp nghiên cứu vào thực tiễn nghề nghiệp.
  • Kết nối các phương pháp, công cụ của khoa học dữ liệu với các ngành khoa học khác.
  • Nhận diện, đánh giá, chủ động thích nghi với bối cảnh xã hội và ngoại cảnh của hoạt động nghề nghiệp trong khoa học dữ liệu.
    • Nhận diện được các yếu tố tác động từ bên ngoài để hiểu bối cảnh hoạt động; đánh giá các tác động của các yếu tố đó đến hoạt động nghề nghiệp thuộc lĩnh vực khoa học dữ liệu; từ đó thích nghi với sự thay đổi của ngoại cảnh và chủ động trước những biến động của bối cảnh xã hội. Hiểu rõ vai trò của cử nhân Khoa học dữ liệu trong thời đại thông tin với nhu cầu tìm kiếm, vận dụng các tri thức từ kho cơ sở dữ liệu thực tế khổng lồ, hiểu được các ràng buộc đến từ văn hóa dân tộc, bối cảnh lịch sử, các giá trị thời đại và bối cảnh toàn cầu đối với nghề nghiệp của mình.
  • Phân tích, đánh giá bối cảnh tổ chức để đáp ứng tốt hơn yêu cầu công việc và làm việc thành công trong đơn vị.
    • Phân tích, đánh giá tổ chức nơi mình làm việc trên các phương diện như văn hoá tổ chức, chiến lược phát triển và đối tác chủ yếu của tổ chức, mục tiêu, kế hoạch của tổ chức, mối quan hệ giữa cấu trúc của tổ chức và cấu trúc của hệ thống thông tin quản lí, quan hệ giữa đơn vị với công việc đảm nhận để đáp ứng tốt hơn yêu cầu công việc và làm việc thành công trong đơn vị.
  • Có năng lực sáng tạo, phát triển và dẫn dắt sự thay đổi trong nghề nghiệp
    • Nghiên cứu, cải tiến, đổi mới, sáng chế, phát minh sáng tạo trong hoạt động nghề nghiệp, biết quản trị và dẫn dắt thay đổi, đổi mới, cập nhật và dự đoán xu thế phát triển ngành nghề và khả năng làm chủ khoa học kĩ thuật và công cụ lao động mới.

2.2. Kĩ năng bổ trợ

2.2.1. Kĩ năng cá nhân

  • Học và tự học;
  • Thích ứng nhanh với công việc và sự thay đổi trong công việc;
  • Quản lí bản thân, quản lí thời gian, sắp xếp kế hoạch công việc khoa học và hợp lí.

2.2.2. Làm việc theo nhóm

  • Làm việc hiệu quả theo nhóm, gồm cả các nhóm đa ngành;
  • Xây dựng và điều hành nhóm làm việc hiệu quả;
  • Liên kết được các nhóm.

2.2.3. Quản lí và lãnh đạo

  • Biết tổ chức, phân công công việc trong đơn vị;
  • Biết đánh giá hoạt động của cá nhân và tập thể;
  • Liên kết được các đối tác.

2.2.4. Kĩ năng giao tiếp

  • Sắp xếp được nội dung, ý tưởng giao tiếp;
  • Thành thạo trong giao tiếp bằng văn bản, qua thư điện tử và phương tiện truyền thông;
  • Có chiến lược giao tiếp: chủ động trong giao tiếp với đồng nghiệp, đối tác; luôn có thái độ thân thiện, thể hiện sự tôn trọng đối với mọi người; biết lắng nghe các ý kiến đóng góp;
  • Thuyết trình tốt về lĩnh vực chuyên môn, truyền đạt được vấn đề và giải pháp tới người khác, phổ biến kiến thức, kĩ năng trong việc thực hiện những nhiệm vụ cụ thể, phức tạp.

2.2.5. Kĩ năng sử dụng ngoại ngữ

Sử dụng được ngoại ngữ để giao tiếp, tìm kiếm và trình bày vấn đề chuyên môn đạt chuẩn bậc 3/6 Khung NLNN 6 bậc dùng cho Việt Nam.

2.2.6. Kĩ năng dẫn dắt, khởi nghiệp, tạo việc

Biết dẫn dắt làm chủ tạo ra việc làm cho bản thân và cho những người xung quanh.

2.2.7. Kĩ năng phản biện, phê phán

Có tinh thần phê và tự phê, tư duy phản biện, có thể xây dựng các giải pháp khác nhau cho những vấn đề phát sinh trong điều kiện môi trường làm việc thay đổi.

2.2.8. Kĩ năng đánh giá chất lượng công việc

Sau mỗi nhiệm vụ, đánh giá được chất lượng công việc của mình hoặc của nhóm đã làm, biết cách phân tích kết quả thực hiện từ đó rút kinh nghiệm hoặc phát huy cho các nhiệm vụ tiếp theo.

3. Mức độ tự chủ, tự chịu trách nhiệm

  • Làm việc độc lập hoặc làm việc theo nhóm trong điều kiện làm việc thay đổi, chịu trách nhiệm cá nhân và trách nhiệm đối với nhóm;
  • Hướng dẫn, giám sát những người khác thực hiện nhiệm vụ xác định;
  • Tự định hướng, đưa ra kết luận chuyên môn và có thể bảo vệ được quan điểm cá nhân;
  • Lập kế hoạch, điều phối, quản lý các nguồn lực, đánh giá và cải thiện hiệu quả các hoạt động.

4. Về phẩm chất đạo đức

4.1. Phẩm chất đạo đức cá nhân

Có lối sống lành mạnh, trung thực, khiêm tốn, tôn trọng bản thân và mọi người xung quanh, có trách nhiệm, nhiệt tình và chủ động trong công việc, mong muốn cải tiến và đổi mới, sẵn sàng đương đầu với khó khăn, có tinh thần đấu tranh chống các hành vi tiêu cực trong xã hội;

4.2. Phẩm chất đạo đức nghề nghiệp

Trung thực, có trách nhiệm và đáng tin cậy trong công việc; Trung thành với tổ chức; Luôn có tư tưởng học hỏi, nâng cao trình độ chuyên môn; Có ý thức về quyền sở hữu trí tuệ, về bảo mật và an toàn thông tin; Có tinh thần hợp tác với đồng nghiệp.

4.3. Phẩm chất đạo đức xã hội

Có ý thức chấp hành pháp luật, có trách nhiệm xã hội, có ý thức bảo vệ môi trường, tài sản chung của xã hội, ủng hộ và bảo vệ cái đúng và sự phát triển đổi mới, có lập trường chính trị vững vàng và có ý thức phục vụ nhân dân, xây dựng và bảo vệ đất nước.

Khoa Toán – Cơ – Tin học đã lựa chọn chương trình đào tạo Khoa học dữ liệu của Trường Đại học Michigan, Hoa Kỳ làm chương trình mẫu để xây dựng chương trình đào tạo của mình do mục tiêu đào tạo của chương trình này phù hợp với điều kiện, yêu cầu đào tạo nguồn nhân lực về ngành này trong bối cảnh của Việt Nam nói chung và phù hợp với thế mạnh của Trường Đại học Khoa học Tự nhiên nói riêng.

 

STT

học phần

Học phần

Số tín chỉ

Số giờ tín chỉ

Mã số

học phần

tiên quyết

Lí thuyết

Thực hành

Tự học

I

 

Khối kiến thức chung

(Không tính các học phần 7, 8)

16

 

 

 

 

  1.  

PHI1006

Triết học Mác – Lênin

Marxist-Leninist Philosophy

3

30

15

0

 

  1.  

PEC1008

Kinh tế chính trị Mác – Lênin

Marx-Lenin Political Economy

2

20

10

0

PHI1006

  1.  

PHI1002

Chủ nghĩa xã hội khoa học

Scientific socialism

2

30

0

0

PEC1008

  1.  

HIIS1001

Lịch sử Đảng Cộng sản Việt Nam

History of the Communist Party of Vietnam

2

20

10

0

 

  1.  

POL1001

Tư tưởng Hồ Chí Minh

Ho Chi Minh Ideology

2

20

10

0

 

  1.  

FLF1107

Tiếng Anh B1

English B1

5

20

35

20

 

  1.  

 

Giáo dục thể chất

Physical Education

4

 

 

 

 

  1.  

 

Giáo dục quốc phòng-an ninh

National Defence Education

8

 

 

 

 

II

 

Khối kiến thức chung theo lĩnh vực

7

 

 

 

 

II.1

 

Học phần bắt buộc

2

 

 

 

 

  1.  

INM1000

Tin học cơ sở

Introduction to Informatics

2

15

15

0

 

II.2

 

Các học phần tự chọn

5/15

 

 

 

 

  1.  

HIS1056

Cơ sở văn hóa Việt Nam

Fundamentals of Vietnamese Culture

3

42

3

0

 

  1.  

GEO1050

Khoa học trái đất và sự sống

Earth and Life Sciences

3

42

3

0

 

  1.  

THL1057

Nhà nước và pháp luật đại cương

General Law

2

20

5

5

PHI1006

  1.  

MAT1060

Nhập môn phân tích dữ liệu

Introduction to Data Analysis

2

20

10

0

 

  1.  

PHY1070

Nhập môn Internet kết nối vạn  vật

Internet of things

2

24

6

0

 

  1.  

PHY1020

Nhập môn Robotics

Introduction to Robotics

3

30

10

5

 

III

 

Khối kiến thức chung theo khối ngành

6

 

 

 

 

  1.  

PHY1100

Cơ - Nhiệt

Mechanics – Thermodymiacs

3

30

15

0

 

  1.  

PHY1103

Điện - Quang

Electromagnetism – Optics

3

30

15

0

 

IV

 

Khối kiến thức chung theo nhóm ngành

36

 

 

 

 

IV.1

 

Các học phần bắt buộc

33

 

 

 

 

  1.  

MAT2400

Đại số tuyến tính

Linear Algebra

5

50

25

0

 

  1.  

MAT2501

Giải tích 1

Calculus 1

4

40

20

0

 

  1.  

MAT2502

Giải tích 2

Calculus 2

4

40

20

0

MAT2501

  1.  

MAT2503

Giải tích 3

Calculus 3

2

15

15

0

MAT2502

MAT2400

  1.  

MAT2403

Phương trình vi phân

Differential Equations

3

30

15

0

MAT2501MAT2400

  1.  

MAT2034

Giải tích số

Numerical Analysis

3

30

15

0

MAT2502

MAT2403

MAT3372

  1.  

MAT2323

Xác suất - Thống kê

Probability and Statistics

4

45

15

0

MAT2502

MAT2316/

MAT2317/

MAT2318/

MAT2319[1]

  1.  

MAT2407

Tối ưu hóa

Optimization

3

30

15

0

MAT2502

  1.  

MAT2315

Phương pháp nghiên cứu khoa học

Research Methodology

3

15

30

0

MAT3514

MAT2323

MAT2506

MAT2034

  1.  

MAT2506

Kĩ năng mềm

Soft skill

2

20

10

0

 

IV.2

 

Các học phần tự chọn

3/12

 

 

 

 

  1.  

MAT2316

Lập trình C/C++

C/C++ Programming

3

22

23

0

INM1000

  1.  

MAT2317

Lập trình Java

Java Programming

3

22

23

0

INM1000

  1.  

MAT2318

Lập trình Python

Python Programming

3

22

23

0

INM1000

  1.  

MAT2319

Lập trình Julia

Julia Programming

3

22

23

0

INM1000

V

 

Khối kiến thức ngành

69

 

 

 

 

V.1

 

Các học phần bắt buộc

34

 

 

 

 

  1.  

MAT3500

Toán rời rạc

Discrete Mathematics

4

45

15

0

MAT2400

MAT2501

  1.  

MAT3557

Môi trường lập trình Linux

Linux Programming Environment

2

15

15

0

 

  1.  

MAT3372

Các thành phần phần mềm

Software Components

3

22

23

0

MAT2316/

MAT2317/

MAT2318/

MAT2319

  1.  

MAT3514

Cấu trúc dữ liệu và thuật toán

Data Structures and Algorithms

4

40

20

0

MAT3372

MAT3500

  1.  

MAT3507

Cơ sở dữ liệu

Databases

4

50

10

0

MAT2316/

MAT2317/

MAT2318/

MAT2319

  1.  

MAT3378

Quản trị dữ liệu lớn

Management of big and complex data

3

24

21

0

MAT3507

MAT3372

  1.  

MAT3148

Tính toán song song

Prallel computing

3

30

15

0

MAT3514

MAT3557

  1.  

MAT3379

Phân tích hồi quy và ứng dụng

Applied Regression Analysis

3

24

21

0

MAT2323

MAT2400

MAT2316/

MAT2317/

MAT2318/

MAT2319

  1.  

MAT3533

Học máy

Machine learning

3

30

15

0

MAT2034

MAT3514

MAT2323

MAT2400

  1.  

MAT3380

Seminar Một số vấn đề chọn lọc về Khoa học dữ liệu

Seminar Selected topics on Data Science

2

20

10

0

MAT3514

MAT2323

  1.  

MAT3381

Thực tập thực tế về Khoa học dữ liệu

Project in Data Science

3

0

45

0

MAT3372

MAT3507

MAT2506

V.2

 

Các học phần tự chọn

28

 

 

 

 

V.2.1

 

Tự chọn về kĩ năng phần mềm

4/6

 

 

 

 

  1.  

MAT3382

Lập trình cho Khoa học dữ liệu
Programming for Data Science

 

2

14

16

0

MAT3514

  1.  

MAT3383

Trực quan hóa thông tin

Information Visualization

2

15

15

0

MAT3372

MAT3500

  1.  

MAT3384

Tự động hóa

Autonomous Robotics

2

10

20

0

MAT3533

V.2.2

 

Tự chọn về khoa học máy tính

6/9

 

 

 

 

  1.  

MAT3385

Cơ sở dữ liệu Web và hệ thống thông tin
Web Database and Information Systems

 

3

30

15

0

MAT3372

  1.  

MAT3504

Thiết kế và đánh giá thuật toán
Algorithms Design and Analysis

3

30

15

0

MAT3514

  1.  

MAT3508

Nhập môn trí tuệ nhân tạo
Introduction to Artificial Intelligence

 

3

30

15

0

MAT3372

MAT3507

V.2.3

 

Thống kê và Khai phá dữ liệu

9/15

 

 

 

 

  1.  

MAT3534

Khai phá dữ liệu

Data mining

3

30

15

0

MAT3507

MAT2323

  1.  

MAT3386

Phương pháp tính toán trong thống kê và khoa học dữ liệu
Computational Methods in Statistics and Data Science

3

15

30

0

MAT2323

  1.  

MAT3387

Kĩ thuật lấy mẫu khảo sát
Survey Sampling Techniques

3

30

15

0

MAT2323

  1.  

MAT3388

Phân tích chuỗi thời gian
Analysis of Time Series

3

30

15

0

MAT3507

MAT2323

  1.  

MAT3389

Quy hoạch thực nghiệm Introduction to Design of Experiments

3

30

15

0

MAT2323

V.2.3

 

Tự chọn về ứng dụng Khoa học dữ liệu

9/27

 

 

 

 

  1.  

MAT3390

Nhập môn Tin sinh học
Introduction to Bioinformatics

 

3

30

15

0

MAT3533

  1.  

MAT3391

Hệ thống thông tin địa lí

Introduction to GIS

 

3

30

15

0

MAT3372

MAT3500

MAT3507

  1.  

MAT3392

Ứng dụng dữ liệu lớn trong quản lí rủi ro tai biến thiên nhiên

Big data in risk management of natural disasters

3

30

15

0

MAT3507

MAT2323

  1.  

MAT3393

Khai thác dữ liệu trong Hóa học

Data mining in Chemistry

3

30

15

0

MAT3533

  1.  

MAT3394

Mô hình toán sinh thái
Mathematical Ecology

3

40

5

0

MAT2403

  1.  

MAT3562

Thị giác máy tính
Computer Vision

 

3

30

15

0

MAT3533

  1.  

MAT3395

Lí thuyết trò chơi
Game Theory

3

40

5

0

MAT2323

  1.  

MAT3535

Tìm kiếm thông tin
Information Retrieval

3

30

15

0

MAT3514

  1.  

MAT3399

Xử lí ngôn ngữ tự nhiên và học sâu

Natural Language Processing with Deep Learning

3

24

21

0

MAT3533

V.3

 

Khối kiến thức thực tập và tốt nghiệp

7

 

 

 

 

  1.  

MAT4083

Khóa luận tốt nghiệp

Undergraduate Thesis

7

 

 

 

 

 

 

Các học phần thay thế Khóa luận tốt nghiệp

 

 

 

 

 

  1.  

MAT3397

Một số vấn đề ứng dụng của khoa học dữ liệu

Selected topics on data science application

3

5

40

0

MAT3533

  1.  

MAT3398

Một số chủ đề trong mô hình hóa và phân tích dữ liệu

Topics in Modeling and Data Analysis

4

5

40

0

MAT3533

 

 

Tổng cộng

134

 

 

 

 

Triển vọng nghề nghiệp

Năm 2019, ngành KHDL lọt vào top 10 ngành có nhu cầu cao nhất tại Mỹ

https://www.whatcareerisrightforme.com/blog/top-10-most-in-demand-usa-jobs/

và lọt top 25 ngành có thu nhập cao nhất tại Mỹ https://www.glassdoor.com/research/jobs-companies-2019/

Qua khảo sát nhu cầu tuyển dụng của các doanh nghiệp bằng khảo sát online và hỏi trực tiếp các doanh nghiệp tham gia ngày hướng nghiệp của Khoa. Kết quả cho thấy 100% các doanh nghiệp được hỏi đều cho rằng họ đang rất cần tuyển dụng nhân lực phân tích dữ liệu, đặc biệt là nhân lực phân tích dữ liệu trong lĩnh vực kinh tế, tài chính, viễn thông. Tổng hợp kết quả điều tra trên 20 doanh nghiệp được hỏi được chọn ngẫu nhiên theo các lĩnh vực hoạt động khác nhau cho thấy nhu cầu tuyển dụng hàng năm chỉ của 20 doanh nghiệp này đã vào khoảng 320 nhân sự tốt nghiệp ngành Khoa học dữ liệu một năm. Các công ty thuộc các tập đoàn lớn như Viettel, FPT đều sẵn sàng tuyển ít nhất 50 chuyên gia phân tích dữ liệu mỗi năm.

1. Học phí

Học phí theo quy định của Nhà nước, căn cứ số tín chỉ đăng ký của học kỳ (năm 2018-2019 là 960.000 đồng/ tháng/ 1 sinh viên).

2. Học bổng

Học bổng khuyến khích học tập theo quy định của ĐHQGHN.

Các học bổng tài trợ: Tập đoàn VinGroup, Honda, BIDV, Misubishi,…

Học bổng phát triển ngành Toán học.

Học bổng của cựu sinh viên Khoa Toán – Cơ – Tin học.

3. Môi trường học tập

Cơ sở vật chất: Hệ thống phòng máy tính hiện đại, Phòng thí nghiệm về khoa học dữ liệu hỗ trợ việc học tập của sinh viên.

Thư viện: Sinh viên được sử dụng thư viện của ĐHQGHN với hệ thống tài liệu phong phú.

Giảng viên: Đội ngũ giảng viên của Khoa có 5 Giáo sư, 14 Phó Giáo sư và 41 Tiến sĩ.

Nhiều câu lạc bộ giải trí và học thuật: Guitar, Khiêu vũ, Toán – Tin,..

Một số hướng nghiên cứu ứng dụng của ngành Khoa học dữ liệu

tại Khoa Toán-Cơ-Tin học

Các nhóm nghiên cứu ứng dụng toán học và khoa học máy tính của Khoa đã và đang tham gia thực hiện nhiều đề tài ứng dụng theo đơn đặt hàng của các doanh nghiệp.

Một số hướng nghiên cứu ứng dụng trong 3 năm gần đây được tóm tắt trong bảng sau:

No.

Hướng nghiên cứu

Ứng dụng

1.

Sử dụng các kĩ thuật lưu trữ và phân tích dữ liệu lớn kết hợp tri thức ngành để tạo khác biệt và đổi mới, tăng chất lượng, và tính hiệu quả của các mô hình kinh doanh.

Ứng dụng trong nhiều doanh nghiệp quảng cáo và khuyến nghị.

2.

Sử dụng các công nghệ học tự động, xử lí ngôn ngữ tự nhiên, tìm kiếm thông tin để tăng cường độ chính xác tìm kiếm, đáp ứng yêu cầu cao của người dùng.

Ứng dụng trong các doanh nghiệp thương mại điện tử, bán hàng trực tuyến.

3.

Sử dụng các công nghệ học tự động, xác suất thống kê ứng dụng, xử lí đa ngôn ngữ và phân tích ý kiến của khách hàng để tìm các khía cạnh tích cực, tiêu cực trong những bình luận, phản hồi của khách hàng về sản phẩm và dịch vụ.

Ứng dụng giải các bài toán khảo sát thị trường và dịch vụ khách hàng của nhiều doanh nghiệp đa ngành, đa lĩnh vực như hàng không, nhà hàng, khách sạn, dịch vụ lữ hành, phân tích mạng xã hội.

4.

Sử dụng các công nghệ học tự động, phân tích ngôn ngữ để xây dựng các hệ hỏi đáp tự động, cá nhân hoá, sinh ngôn ngữ tự nhiên.

Ứng dụng xây dựng các hệ thống hỏi đáp thông minh trong trí tuệ nhân tạo.

5.

Sử dụng các công nghệ nhận dạng ảnh và video để bóc tách tự động các đối tượng trong ảnh và video.

Ứng dụng xây dựng các hệ thống xử lí ảnh thông minh, điều khiển xe tự lái và robot.

6.

Sử dụng các công nghệ khai phá dữ liệu và học tự động tiên tiến để phân tích các giao dịch tài chính, phát hiện giao dịch giả mạo, tìm các mẫu hoạt động phổ biến. Nghiên cứu các công nghệ phân tích định lượng và dự báo.

Ứng dụng trong nhiều doanh nghiệp thuộc ngành bảo hiểm, ngân hàng, tài chính, chứng khoán, các quỹ bảo hiểm và đầu cơ.

7.

Sử dụng các thuật toán sinh số ngẫu nhiên mật mã và các kĩ thuật mã hoá dữ liệu để xác thực danh tính của người dùng, chống giả mạo.

Ứng dụng trong các giao dịch thương mại điện tử, xác thực và chữ kí số, công nghệ chuỗi khối.

8.

Sử dụng các lí thuyết dàn và đường cong elliptic để giải quyết một số bài toán quan trọng trong ngành mật mã học và phá mã.

Ứng dụng trong các ngành mật mã và cơ mật, trọng yếu, yêu cầu an ninh, an toàn cao.

9.

Sử dụng các thuật toán tối ưu và quy hoạch tiên tiến để giải quyết các bài toán trong các ngành kho vận, quy hoạch giao thông, dẫn đường bay cho máy bay, công nghiệp sản xuất.

Ứng dụng trong các ngành giao thông vận tải, kho vận, xí nghiệp, nhà máy công nghiệp.

10.

Sử dụng các kĩ thuật mô phỏng và các mô hình xác suất thống kê tiên tiến để dự báo biến đổi khí hậu, các hiện tượng khí tượng và thuỷ văn.

Ứng dụng trong các ngành dự báo thời tiết, biến đổi khí hậu, thuỷ văn, hải dương học.

Đối tác và khách hàng của các hướng nghiên cứu khoa học dữ liệu của Khoa gồm những doanh nghiệp lớn trong nước (Viettel, FPT, VinGroup, Vietnam Airlines,...) và nhiều doanh nghiệp nước ngoài (Nhật Bản, Hàn Quốc, Đức,...).

Hoạt động sinh viên

Doanh nghiệp tư vấn và tuyển dụng trực tiếp sinh viên Khoa Toán - Cơ - Tin học tại Trường

Hoạt động sinh viên

Thầy cô bất ngờ trước lời chúc của sinh viên trong Ngày Nhà giáo Việt Nam

Hoạt động sinh viên

Giải bóng đá sinh viên nữ

Hoạt động sinh viên

Giải bóng đá dành cho sinh viên Khoa Toán - Cơ - Tin học

 

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỊA CHỈ: 334 Nguyễn Trãi - Thanh Xuân - Hà Nội

Điện thoại: (84) 0243-8584615 / 8581419

Fax: (84) 0243-8523061

Email: hus@vnu.edu.vn - admin@hus.edu.vn

Cổng thông tin tuyển sinh Đại Học Quốc Gia Hà Nội: http://www.tuyensinh.vnu.edu.vn

LIÊN KẾT FACEBOOK

Bản quyền © Trường ĐHKHTN-ĐHQGHN